Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin.
نویسندگان
چکیده
unc-13 mutants in Caenorhabditis elegans are characterized by a severe deficit in neurotransmitter release. Their phenotype is similar to that of the C. elegans unc-18 mutation, which is thought to affect synaptic vesicle docking to the active zone. This suggests a crucial role for the unc-13 gene product in the mediation or regulation of synaptic vesicle exocytosis. Munc13-1 is one of three closely related rat homologues of unc-13. Based on the high degree of similarity between unc-13 and Munc13 proteins, it is thought that their essential function has been conserved from C. elegans to mammals. Munc13-1 is a brain-specific peripheral membrane protein with multiple regulatory domains that may mediate diacylglycerol, phospholipid, and calcium binding. In the present study, we demonstrate by three independent methods that the C terminus of Munc13-1 interacts directly with a putative coiled coil domain in the N-terminal part of syntaxin. Syntaxin is a component of the exocytotic synaptic core complex, a heterotrimeric protein complex with an essential role in transmitter release. Through this interaction, Munc13-1 binds to a subpopulation of the exocytotic core complex containing synaptobrevin, SNAP25 (synaptosomal-associated protein of 25 kDa), and syntaxin, but to no other tested syntaxin-interacting or core complex-interacting protein. The site of interaction in syntaxin is similar to the binding site for the unc-18 homologue Munc18, but different from that of all other known syntaxin interactors. These data indicate that unc-13-related proteins may indeed be involved in the mediation or regulation of synaptic vesicle exocytosis by modulating or regulating core complex formation. The similarity between the unc-13 and unc-18 phenotypes is paralleled by the coincidence of the binding sites for Munc13-1 and Munc18 in syntaxin. It is possible that the phenotype of unc-13 and unc-18 mutations is caused by the inability of the respective mutated gene products to bind to syntaxin.
منابع مشابه
Differential expression of two novel Munc13 proteins in rat brain.
Munc13-1, a mammalian homologue of Caenorhabditis elegans unc-13p, is a presynaptic phorbol ester receptor that enhances neurotransmitter release. In the present study we analysed the regional, cellular and subcellular expression patterns in rat of two novel Munc13 proteins, Munc13-2 and Munc13-3. We demonstrate by hybridization in situ that Munc13-1 mRNA is expressed throughout the brain, wher...
متن کاملBinding of UNC-18 to the N-terminus of syntaxin is essential for neurotransmission in Caenorhabditis elegans.
SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) are widely accepted to drive all intracellular membrane fusion events. SM (Sec1/Munc18-like) proteins bind to SNAREs and this interaction may underlie their ubiquitous requirement for efficient membrane fusion. SM proteins bind to SNAREs in at least three modes: (i) to a closed conformation of syntaxin; (ii)...
متن کاملUNC-18 promotes both the anterograde trafficking and synaptic function of syntaxin.
The SM protein UNC-18 has been proposed to regulate several aspects of secretion, including synaptic vesicle docking, priming, and fusion. Here, we show that UNC-18 has a chaperone function in neurons, promoting anterograde transport of the plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein Syntaxin-1. In unc-18 mutants, UNC-64 (Caenorhabditis ...
متن کاملRegulation of the UNC-18-Caenorhabditis elegans syntaxin complex by UNC-13.
The Caenorhabditis elegans unc-13, unc-18, and unc-64 genes are required for normal synaptic transmission. The UNC-18 protein binds to the unc-64 gene product C. elegans syntaxin (Ce syntaxin). However, it is not clear how this protein complex is regulated. We show that UNC-13 transiently interacts with the UNC-18-Ce syntaxin complex, resulting in rapid displacement of UNC-18 from the complex. ...
متن کاملMunc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses
The molecular mechanisms that regulate late endosomal maturation and function are not completely elucidated, and direct evidence of a calcium sensor is lacking. Here we identify a novel mechanism of late endosomal maturation that involves a new molecular interaction between the tethering factor Munc13-4, syntaxin 7, and VAMP8. Munc13-4 binding to syntaxin 7 was significantly increased by calciu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 4 شماره
صفحات -
تاریخ انتشار 1997